IMPLEMENTATION OF CONSTANT MULTIPLIER FFT

D.R. SANDEEP, Department of ECE, Sri Vasavi Engineering College, Tadepalligudem, Andhra
Pradesh, India. Sandeepdrl23@gmail.com
KUNCHE RAMA LAKSHMI, Department of ECE, Sri Vasavi Engineering College,
Tadepalligudem, Andhra Pradesh, India. lakshmikunche6301@gmail.com
MAAKINEEDI SAI LAKSHMANA SURYA TEJ, Department of ECE, Sri Vasavi Engineering
College, Tadepalligudem, Andhra Pradesh, India. Suryatejmsl@gmail.com
CH.V.P. PRIYA, Department of ECE, Sri Vasavi Engineering College, Tadepalligudem, Andhra
Pradesh, India. Priyachodisetty123@gmail.com
SUNNAM PRAVEEN BABU, Department of ECE, Sri Vasavi Engineering College,
Tadepalligudem, Andhra Pradesh, India. Sunnampraveenl123@gmail.com

Abstract-The Constant Multiplier (CM) FFT hardware architecture presented in this work is a new Fast
Fourier Transform (FFT) hardware design. CM-FFT uses a constant multiplier to calculate the rotation,
unlike previous designs that required rotating the rotor between different angles. In this work, we
examine 4-parallel and 8-parallel radix--2 CM FFTs. This performs the entire FFT calculation using a
constant multiplier. Then radices 2k are provided, with radix24 and radix25 being the best options
around. The proposed method achieves the highest clock frequency with 4-parallel FFT and at the same
time, 1024-point-based experimental evidence shows that the number of random access blocks (BRAM)
and digital signal processing (DSP) are reduced compared to previous methods. Reduce the amount -2
A5 CM FFT areported architecture on field-programmable gate arrays (FPGAS).

1.INTRODUCTION

One of the most important techniques in the field of digital signal processing is DFT. Due to the
computational complexity of the Fast Fourier Transform (FFT), several FFT algorithms have been
developed over the years. Modern digital communication systems such as digital video broadcasting
(DVB) and orthogonal frequency division multiplexing (OFDM) systems rely heavily on FFTs.
Algorithms such as radix-4,[1], split-radix[2], radix-22[3] are built using the underlying radix-2 FFT
technique. The Radix-2 Multipath Delay Exchanger (R2ZMDC) is one of the oldest ways to implement
the Radix-2 FFT in a pipeline [4]. The common use of memory buffers in R2ZMDC creates a less
memory radix-2 single-pass delay feedback (R2SDF)[5] architecture.

Additionally, most of these hardware architectures are underutilized and require sophisticated
hardware. High-throughput, low-power designs are important in the era of high-speed digital
communications because they can meet speed and performance demands with minimal hardware
overhead. In this work, we introduce a new method for designing architectures using FFT flow graphs.
Some known FFT designs are derived using convolution transforms [6] and register minimization
techniques [7][8].

2. FOLDING TRANSFORMATION

Several butterflies in the same column can be mapped to single butterfly unit using the folding
transformation For an architecture with FFT size N, a convolution factor of N/2 results in a 2-parallel
architecture, and a convolution factor of N/4 results in a design where four samples are processed in
one clock cycle. A family of FFT designs is generated by various folding sets [9].

3. Design Methodologies for FFT Architectures

This section provides a general presentation of convolution transforms and register minimization
approaches used in various well-known FFT structures. [9] An 8-point radix-2 DIF FFT is used as a
diagram to illustrate the procedure. It can be used like any other radical. A flowchart for a radix-2 8-
point DIF FFT is shown in Figure 1 [9]. This section provides a comprehensive presentation of
convolution transforms and register reduction approaches used to construct many well-known FFT
structures. [9] An 8-point radix-2 DIF FFT is used as a diagram to illustrate the procedure. It can be
used like any other radical. A flowchart for a radix-2 8-point DIF FFT is shown in Figure 1 [9].

mailto:Suryatejmsl@gmail.com

B

Fig 1:DataFlow graph (DFC$) using 8-point raaix—2 DIF FFT

As seen in fig. 1, this technique can be expressed as a data flow graph (DFG). The DFG's nodes stand
in for tasks or calculations. All of the nodes here depict the radix-2 FFT [11] algorithm's butterfly
calculations. A folding set, which is an organized set of procedures carried out by an identical functional
unit, is necessary to change the DFG. The folding factor is the number K of entries in each folding set,
some of which might be null operations.

%0

x4

x1

x5

Figure 2 shows the pipelined DFG of the 8-point DIF-FFT before convolution. As an example, consider
the convolution set A =,,,, A0, Al, A2, A3 with K=8. Convolution set A with convolution order 4
contains operation AO. Functional units are idle during null operations while performing operations A0,
Al, A2, and A3 at appropriate times. The 8-point FFT architecture is derived using an orderly
convolution technique. Consider an edge (e) with w(e) delay connecting nodes U and V.

The convolution equation (1) for edge e is
DF (U - V)=K w(e)-PU + v - u (1)

Assume that the number of pipeline stages of the hardware module processing node U is PU.
Convolution equations with negative delays (non-pipelined) and non-negative delays are obtained using
convolution sets (pipelined or retiming). Consider folding the DFG using the fold set in Figure 2.

A= {f,f, f,f, A0, Al, A2, A3}
B ={B2, B3, f, f, , f, B0, B1}
c={C1,C2,C3 f f f, f CO}.

Suppose the butterfly operation has no pipeline stages (PA=0, PB=0, PC=0).
Retiming and/or pipelining [10] can be used to show that the convolution set is infeasible or satisfy
DFU-V) 0.You may see negative delays on some edges. there is an equation

DF(A0-B0)=2 DF(B0O-C0)=1

DF (A0-B2)=-4 DF(BO-Cl)=-6
DF (AL-Bl)=2 DF(B1-C0)=0
DF (AL-Bl)=-4 DF(BL-Cl)=-7
DF (A2-B0)=0 DF(B2-C2)=1
DF (A2-B2)=-6 DF(B2-C3)=2
DF (A3-B1)=0 DF(B3-C2)=0
DF (A3-B3)=-6 DF(B3-C3)=1....(2)

It is shown that the DFG can be pipelined to ensure that the folded hardware delay numbers are non-
negative. Here is his DFG delay for the folded pipeline:

DF (AO-B0)=2 DF(BO-C0)=1
DF (A0-B2)=4 DF (BO-C1)=2
DF (A1-B1)=2 DF(B1-C0)=0

DF(Al-Bl)=4 DF(BI1-Cl)=1
DF(A2-B0)=0 DF(B2-C2)=1
DF(A2-B2)=2 DF(B2-C3)=2
DF(A3-B1)=0 DF(B3-C2)=0
DF(A3-B3)=2 DF(B3-C3)=1.(3)

4. DESIGN TECHNIQUES Of FFT
A block diagram of the folding structure used in the FFT method is depicted in Figure 3

FOLDING FOLDING RETIMING
SETS EQUATIONS FOLDING
EQUATIONS
_ y
FOLDED . e
ARCHITECTURE |¢ REGISTER LIFETIME
ALLOCATION ANALYSIS

Fig. 3: Diagram of FFT design methods

Lifetime analysis, which evaluates the time between a data's production (Tinput) and eventual
consumption, is an approach for reducing registers (Toutput).

T input = u plus PU (4)

T output = u+PU+maxv DF (U,V)

T output = u+PU+maxv DF (U,V) (5) where PU is the number of pipelining stages in the functional
unit that performs u and u is the folding order of U. The folded architecture may be implemented using
the 24 registers (3).

4.REGISTER TECHNIQUES FOR MINIMIZATION
The number of alive variables at each time unit is determined in lifetime analysis, and the maximum
number of alive variables at every time unit is.

specified. This is the absolute minimum number of registers need to run the DSP programme.

The folding architecture is designed with as few registers as possible using lifetime analysis techniques.
Let variables y0, y1, ..., y7 correspond to the results at nodes A0, Al, A2, and A3 of the current 8-point
FFT configuration, respectively. These edges are synthesized in a folded architecture using 16 registers.
The maximum number of variables active in any unit of time is the minimum number of registers
required to implement this DSP program.

NODE TmputToutput
vl 46

vl 5*7T

vl

V3 -

v4 4> 8

¥5 50

b 6> 8

y7 7+ 0

Fig.4 Table of linear lifetimes

The figures 4 and 5 depict the linear lifespan table and lifespan chart for these factors. As can be
observed from the lifespan chart[4], the folded architecture only needs 4 registers as oppose to 16
registers in a simple implementation. Allocating registers in a forward-backward manner follows next.

Cycle# y0 yl y2 y3 y4 y5 y6 y7 Lived#
4 0
5 2
5 —=o @ 4
7 ® ¢ 4
8 ® . 4
9 2

° ®
Fig. 5: Linear lifespan chart

An allocation table can be used to conduct register allocation. The variables are allocated to registers in
the allocation table according to the allocation methodology. Figure 6 illustrates the allocation table that
employs the forward-backward strategy to distribute the data for the 3 x 3 matrix transposer. [6][8].

1) Use lifespan analysis to determine the minimal number of registers.

2) Enter each variable in the time step that corresponds to the start of its lifespan.

3) Once a variable is dead or reaches the final register, it is allotted in a forward fashion.

4) The allocation of the present iteration continues in later iterations because this allocation is periodic.
5) The remaining life time is computed for variables that approach the last register but are not yet dead,
and all these variables are assigned to a register in a reverse manner according to first come, first served.
6) Continue performing steps 4 and 5 till the allocation is finished.

RB Journal of Lib & Information Science ISSN: 0972-2750

(UGC Care Group | Listed Journal) Vol-13 Issue-04 No.03: 2023

VP R1 R2 R3 R4

4 | yoya

5 y1.,¥y5 va _-_q__‘—"‘yo

6 @6 v5 ya | >yl yO

7 | 3v7 v6 v5 va v

8 v7 v5 va

o V7 5

Fig. 6 Table of register allocation

The final structure in Fig. 7 may be synthesized from the allocations table in Fig. 6 and also the folding
equations, and it can be obtained by simultaneously reducing the registers across all variables. Just 50%
of the hardware is utilized in the resulting architecture. With this technology, pipelined parallel FFT

designs are described.
— I
0 J
Xli] U: |)=

il Bl Bl

o _@M K

Figure 7. Folded Architecture

The required number of multipliers, adders, and delay components determines the hardware complexity
of the design. Throughput indicates performance. The radix-24 architecture requires fewer multipliers
than previous systems. The proposed FFT design reduces hardware complexity.

Architectures | Multipliers | Adders | Delays | Throug
hiput

RIMDC 2logeN-1) | 4logsN | 23N2-2) | 1
R2SDF QlogeN-1) |4logN | 2N-1) |1
R2"25DF (logeN-1) | 4logN | 2N-1) |1
R2"3SDF (logeN-1) [4logN | 2N-]) |1
4
4

Radix 23 logN-1) | 4logN-2 | <IN
Radix 24 2logisN-1) | 4logN-2 | <IN
Figure 8. Comparison of N point FFT pipelined FFT architectures

6.RESULT
6.1 Overview of Device Usage:

Copyright @ 2023 Author

RB Journal of Lib & Information Science ISSN: 0972-2750

(UGC Care Group I Listed Journal) Vol-13 Issue-04 No.03: 2023
Logic Utikzatien sed Utilization
Hurber ofSice Fi Flgs 532 %
Hurber o gLl ' 430 5%
Murber ofoceuied Sk | 44% w
Hember o Shces containing ooy relgted lgc L8 141 1m0%
Hrber of Shes e rveited g 1 141 9%
TolalNumber of $rout LT £ 105 9,312 6%
Iharoer ted ot g 154
ot ueed i 2 oute-fru %
Horber used a Shiftregsters i
Tunbe o bt [0 9 1 E
Hurber ofRAMELSs H b 0%
Turber of BRI 1 u 5
Hurbe ofMITIENI6SICs 4 F) W%
InersgeFarutof ln CackNels E

In this case, a SPARTAN 3 device and XILINX 13.2 freeware were used to create and simulate foldable
FFT and traditional FFT designs

6.2. Time Overview:

Time restrictions inform the implementation tools of all design requirements. This indicates that the
relevant restriction covers every route. This gives concepts that describe how to discover and restrict
the most frequent timing pathways.

Minimum duration:10.666ns

(maximum frequency: 93.758MHz)

Minimum arrival time: 5.224ns

Maximum required end time after clock: 4.063ns

Maximum combined path delay: path not found

6.3.Report on Place & Route:

It describes where and how to place design in order to complete it on schedule.

Copyright @ 2023 Author Page | 17

Number of External 10Bs 90

Number of 10Bs with External Input 40

Number of IBUFs from External Input 40

Number of 10Bs for External Output 50

Number of 10Bs for External Output 50

6.4. Report on power generation:

The tool X Power Analyzer (XPA) is used to estimate post-implementation power. This tool gives you
access to the implemented design database, which is the most precise since it enables you to pinpoint

the precise logic and routing resources employed.

The several viewpoints, such as resource kinds, design hierarchy, clock domains, overall performance
analysis, and more, let you browse your design.

Also, XPA allows you to adjust your environment settings and design activities so you can evaluate
ways to reduce your design's supply and thermal power consumption.

This report shows less power required and also provides performance information.
6.5. Folded Transformation schematic:

This image of the folded transformation displays the 256-point FFT's folding architecture. Reduced
multipliers and adders in folding designs result in reduced power consumption.

These designs have been designed to work best when the input values for RFFT are actual. Two
alternate scheduling strategies have been suggested, one of which has less sophisticated control logic
and the other of which has less delay components.

Since two input samples can be processed simultaneously, the operating frequency can be reduced by
two, reducing power consumption by 50%. They are excellent candidates for use in portable
applications. The actual FFT structure is underutilized. Future work will include developing FFT
structures for real-valued signals that take full advantage of this technique.

7.CONCLUSION:
In this work, we propose a new approach to FFT implementation using a minimized hardware
architecture called pipeline architecture and a design technique called convolutional transform

technique. For an FFT size of N, N/2 convolution factors lead to a 2-parallel architecture, and in
another design, N/4 convolution factors lead to a 4-parallel architecture design, where 4 samples are
processed. in the same clock cycle. A set of different convolutions lead to a family of FFT
architectures, design techniques reduce buffer registers, and parallel execution in a single clock cycle
reduces power consumption and increases speed. This is Because several butterflies within a same
columns could be mapped to a single butterfly unit, this is the case

In the proposed method, hardware utilization is only 50% in the derived architecture the pipelined
parallel FFT architectures are presented by using this methodology, which in turn reduces the power
consumption up to 50%.

REFERENCES:

[1]

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[9]

[10]

[11]

Glittas, AX, Sellathurai, M and Lakshminarayanan, G 2016, “A Normal I/O Order Radix-
2 FFT Architecture to Process Twin Data Streams for MIMO”, IEEE Transactions on Very
Large Scale Integration(VLSI) Systems, vol. 24, no. 6, pp. 2402-2406, doi:10.
1109/TVLSI. 2015. 2504391

Ansuman Diptisankar Das, Abhishek Mankar, N. Prasad, K. K. Mahapatra, Avas Kanta
Swain, "Efficient VLSI Architectures of Split Radix FFT using New Distributed
Arithmetic", International Journal of Soft Computing and Engineerimg (IJSCE) ISSN:
2231-2307, vol. 3, Issue-1, march 2013, doi: 10.1109/ICGCCEE.2014.6922237

S. He and M. Torkelson, “A new approach to pipeline FFT processor”, in Proc. 10" Int.
Parallel Process. Symp. , 1996, pp. 766-770.

H. Liu and H. Lee, “A high performance four-parallel 128/64- point radix-24 FFT/IFFT
processor for MIMO-OFDM systems,” in Proc. IEEE Asia Pacific Conf. Circuits Syst.
(APCCAS), Nov. 2008, pp. 834-837

Y. N. Chang, “An efficient VLSI architecture for normal I/O order pipeline FFT design”,
IEEE Trans. Circuits Syst. Il, Exp. Briefs, vol. 55, no. 12, pp. 1234-1238, Dec. 2008,
doi:10. 1109/TCSII. 2013. 2268411

A. M. Despain, “Fourier transform computers using CORDIC iterations”, IEEE Trans.
Comput. , vol. C-3, pp. 993-1001, doi:10. 1109/T-C. 1974. 223800

L. Li and A. M. Wyrwicz, “Parallel 2D FFT implementation on FPGA suitable for real-
time MR image processing,” Rev. Sci. Instrum., vol. 89, no. 9, pp. 1-9, Sep. 2018.

H. L. Groginsky and G. A. Works, “A Pipeline Fast Fourier Transform”, IEEE Trans.
Comput. , vol. C-19, no. 11, pp. 1015-1019, doi:10. 1109/T-C. 1970. 222826

L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally pipelined FFT
processor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, pp. 585-589, Jul.
2006.

L. Liu, J. Ren, X. Wang , and F. Ye, " Design of low-power, 1GS/s throughput FFT
processor for MIMO-OFDM UWB communication system,” in Proc.lEEE Int, Symp,
Circuits Syst., May 2007, pp.2594-2597.

S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT processor for OFDM-based
WPAN applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, pp. 451—
455, Jun. 2010.

https://doi.org/10.1109/ICGCCEE.2014.6922237

